
Unified Parallel C at LBNL/UCB

UPC AMR Status Report

Michael Welcome
LBL - FTG



Unified Parallel C at LBNL/UCB

Outline

• Why Chombo AMR as a target application?
• Overview of the Chombo Framework
• Current status of UPC-AMR
• Preliminary performance data
• Ghost zone exchange analysis



Unified Parallel C at LBNL/UCB

Why AMR?

• Methodology of interest to DOE
- Chombo, AmrLib, GrACE, Flash
- Example of modern “efficient” algorithm
- Compute intelligently: brains over brawn

• Large, complex application will stress compiler and 
runtime system
- Mix of regular and irregular data structures

• But mostly… I know the algorithm, I worked on it for 
10 years.

• Why Chombo AMR? – APDEC SciDac + local 
expertise



Unified Parallel C at LBNL/UCB

What is AMR?

• AMR frameworks 
- provide the infrastructure to dynamically refine the 

computational domain in the numerical solution of Partial 
Differential Equations.

• AMR acts like a numerical microscope
- Compute highly refined solution only where needed
- Coarse grid solution elsewhere

• Ideal for problems of multiple scales
- Combustion, turbulence, interface between particle 

methods and continuum mechanics



Unified Parallel C at LBNL/UCB

Example 2D Problem:
Block Structured AMR

• Chombo AMR: Mach 4 blast wave hitting UPC logo
- Periodic in X-direction, reflecting wall in Y-direction
- Single level 0 grid patch
- Large boxes show location of Level 1 grid patches (2x refinement)
- Small boxes show location of Level 2 grid patches (4x refinement)



Unified Parallel C at LBNL/UCB

Chombo Overview

• Intent: make it easy for scientist to port grid-based code 
to parallel adaptive code
- Basic unit of work is a grid patch (Nd fortran array)
- Framework hides parallel implementation and gritty 

details of adaptive structure.
• C++ class library with calls to FORTRAN

- Library: 62000 lines C++, 1100 lines FORTRAN
- Examples: 70000 lines C++, 13000 lines FORTRAN

• Supports Hyperbolic, Parabolic & Elliptic solvers
- Low Mach number combustion, MHF, Accelerator 

Physics, String theory



Unified Parallel C at LBNL/UCB

Chombo Overview (2)

• All processes have copy of all AMR metadata 
• Data organized by refinement level: union of disjoint grid patches
• Each grid patch exists on (belongs to) one process

- Load balance by distribution of grid patches
• Communication is done in MPI
• Parallel implementation buried in low-level Chombo library 

- Not (necessarily) visible at “user” level
• Communication via “Exchange” operation (copy-on-intersect) 

over union of grids at same refinement level.
- Sender copies appropriate grid data to buffers, issues isend
- Receiver issues irecv into buffer, then copies to target grid

• Communication between levels via restriction and prolongation 
operations plus Exchange.

• Some reductions/barriers sprinkled through code



Unified Parallel C at LBNL/UCB

Chombo example in 3D



Unified Parallel C at LBNL/UCB

UPC-AMR Overview

• Port subset of Chombo AMR to UPC
- Basic AMR data structures (C++ to C/UPC)

- IntVect, Box, ProbDomain, Godunov integrator, …
- Calls to Chombo FORTRAN kernels

- Identical numerics: Allows direct comparison
• Many Chombo C++ classes use templates, inheritance and the 

STL
- Did not port directly
- Re-wrote simplified versions in C

• Communication
- Metadata in shared address space

- All threads cache locally for fast access
- Grid data in shared address space

- UPC_memget for ghost data (more on this later)
- Simple “min” reduction for timestep update



Unified Parallel C at LBNL/UCB

UPC-AMR: Current Status

• Supports a single level of grids tiling a rectangular 
domain
- Currently no adaptivity, no refinement
- Data structures, operations to support these do 

exist.
• Gas dynamics only (hyperbolic PDE)

- No parabolic or elliptic solvers
• 12,000 lines of C/UPC, 1700 lines of FORTRAN
• Difficult test-case for our portable translator

- Just got it working recently (last week)
• Ghost zone exchange

- Upc_memget working
- Non-blocking strided memget is coded, not tested



Unified Parallel C at LBNL/UCB

Domain tiling in UPC-AMR

• Problems run with simple, regular grid tiling
• Will work with any tiling

- Needed for general adaptive framework
- Implemented as list/array of grid patches
- NOT implemented as block-cyclic array

Regular Tiling Irregular Tiling



Unified Parallel C at LBNL/UCB

Simplified 1-level Algorithm

dt = compute_initial_timestep();
sim_time = 0;
While (sim_time < stop_time) {

UPC_FORALL(mygrids) {
Fill_ghost_region_with_EXCHANGE(G);

}
new_dt = infinity
UPC_Forall(mygrids) {
g_dt = advance_grid(G,dt);
new_dt = MIN(new_dt,g_dt);

}
sim_time += dt;
dt = UPC_REDUCE_MIN(new_dt);

}



Unified Parallel C at LBNL/UCB

Preliminary Performance Data
Ouch!

• 2D Problem: 
- 400x200 mesh, 32 grids, 100 steps,16 threads

• 3D Problem: 
- 192x128x128 mesh, 96 grids, 20 steps, 32 threads

3D Problem

0.000

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

200.000

Seaborg-Amr Seaborg-
Chombo

Lemieux-Amr Lemieux-
Chombo

Ti
m

e 
(s

ec
)

Advance Time Comm Time

2D Problem

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

Seaborg-Amr Seaborg-
Chombo

Lemieux-Amr Lemieux-
Chombo

tim
e 

(s
ec

)

Advance Time Comm time



Unified Parallel C at LBNL/UCB

Notes on Problem Runs

• Seaborg:
- Ran with 8 processes/threads per node
- AMR uses LAPI conduit

- Each LAPI thread spawns 2 worker threads
- 24 threads per node, 16 CPUs per node

- Context switches in 3D problem:
- AMR-UPC: > 50,000 context switches per LAPI task
- Chombo: < 2,700 context switches per MPI task



Unified Parallel C at LBNL/UCB

Ghost Region Exchange

• Filling boundary or “ghost” zones for Grid 1 (4 zone wide)
- A: from grid 3, B: from Grid 4, C: from Grid2, etc

Grid 1 Grid 2

Grid 3 Grid 4

C

BA

Options:
1. Pointwise 

assignment through 
shared pointer

2. UPC_memget of 
contiguous 
segments

3. Use of proposed 
blocking or non-
blocking strided 
memget operations

4. Pack to contiguous 
buffer, get, unpack



Unified Parallel C at LBNL/UCB

Ghost region analysis
Regular tiling, 4 ghost zones

• Ghost regions in 2D: (32x32 grid, 4 components)
- 8 regions: 4 faces, 4 corners
- 4 4x4 corners  (64 cells, 16 pencils len=4)
- 2 4x32 faces    (256 cells, 64 pencils len=4)
- 2 32x4 faces    (256 cells, 8 pencils len=32)
- Total: 2304 cells, 352 pencils

• Ghost regions in 3D: (32x32x32 grid, 5 components)
- 26 regions: 6 faces, 12 edges, 8 corners
- 8 4x4x4 corners  (512 cells,  128 pencils len=4)
- 4 32x4x4 edges   (2048 cells, 64 pencils len=32)
- 4 4x32x4 edges   (2048 cells, 512 pencils len=4)
- 4 4x4x32 edges   (2048 cells, 512 pencils len=4)
- 2 4x32x32 faces  (8192 cells, 2048 pencils len=4)
- 2 32x4x32 faces  (8192 cells, 256 pencils len=32)
- 2 32x32x4 faces  (8192 cells, 256 pencils len=32)
- Total: 156169 cells, 18880 pencils

Unit stride in memory



Unified Parallel C at LBNL/UCB

Exchange analysis

1. Pointwise assignment
• Very expensive without good compiler optimization

2. UPC_memget (current implementation)
• Still expensive, especially in 3D

3. (Proposed) strided memget
• Should work well especially with good HW and runtime system

4. Pack/Unpack (used in Chombo)
• Minimal communication, but Harder to program

• two sided, more coordination, extra metadata, two data copies

At most 26
26

18880
156169

3D

Hard
Easy
Easy

Very Easy
Ease of Use

At most 8Pack/Unpack
8strided memget

352UPC_memget
2304Pointwise Assignment
2DExchange Option:

Number of Communication Operations in Exchange



Unified Parallel C at LBNL/UCB

Want: non-blocking strided 
memget/put

• Easy to program!
• Small number of communication calls per grid
• Non-blocking version allows for overlap of 

computation with communication:
- Initiate non-blocking communication calls for all 

local grids. 
- Poll local grids, when all comm for a grid is 

complete, compute on it.
• Ideal when communication thread runs on dedicated 

hardware and can perform gather/scatter without host 
CPU support
- Red Storm?



Unified Parallel C at LBNL/UCB

Gratuitous UPC-AMR
picture



Unified Parallel C at LBNL/UCB

Conclusion

• Completed first stage of Chombo AMR port to UPC
- Single level, gas dynamics

• Porting is slow
- Not easy to translate C++ to C
- Porting Chombo means re-writing Chombo

• Code exposed bugs in portable translator
- Structure padding for different target architectures

• Initial performance numbers are disappointing, but 
understood
- Optimized async strided memget operation needed.


